Florian D. Schneider

Body mass constraints on feeding rates determine the consequences of predator loss

by  Schneider, F.D., Scheu, S. & Brose, U.

Published: 02 March 2012
In: Ecology Letters, 15:436–443
doi: 10.1111/j.1461-0248.2012.01750.x

Abstract

Understanding effects of species loss in complex food webs with multiple trophic levels is complicated by the idiosyncrasy of the predator effects on lower trophic levels: direct and indirect effects intermingle and may increase, decrease or not affect ecosystem functioning. We introduce a reductionist approach explaining a predator’s trophic effect only by empirically well-founded body-mass constraints on abundance, diet breadth and feeding strength. We demonstrate that this mechanistic concept successfully explains the positive, negative and neutral net effects of predators on decomposers in a litter microcosm experiment. This approach offers a new perspective on the interplay of complex interactions within food webs and is easily extendable to include phylogenetic and other body-mass independent traits. We anticipate that allometry will substantially improve our understanding of idiosyncratic predator effects in experiments and the consequences of predator loss in natural ecosystems.

References

  • Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Let., 9, 1146-1156.
  • Berlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. & Brose, U. (2009). Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. U.S.A., 106, 187-191.
  • Brose, U. (2010). Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol., 24, 28-34.
  • Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. & Scheu, S. (2008). Foraging theory predicts predator-prey energy fluxes. J. Anim. Ecol., 77, 1072-1078.
  • Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
  • Byrnes, J.E. & Stachowicz, J.J. (2009). The consequences of consumer diversity loss: different answers from different experimental designs. Ecology, 90, 2879-2888.
  • Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R.P., Sechrest, W., et al. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309, 1239-1241.
  • Dial, K.P., Greene, E. & Irschick, D.J. (2008). Allometry of behavior. Trends Ecol. Evol., 23, 394-401.
  • Digel, C., Riede, J.O. & Brose, U. (2011). Body sizes, cumulative and allometric degree distributions across natural food webs. Oikos, 120, 503-509.
  • Ehnes, R.B., Rall, B.C. & Brose, U. (2011). Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Let., 14, 993-1000.
  • Fagan, W.F. & Denno, R.F. (2004). Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Let., 7, 876-883.
  • Finke, D.L. & Denno, R.F. (2005). Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol. Let., 8, 1299-1306.
  • Fontaine, C., Guimarães Jr, P.R., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W.H., et al. (2011). The ecological and evolutionary implications of merging different types of networks. Ecol. Let., 14, 1170-1181.
  • Griffiths, G.J.K., Wilby, A., Crawley, M.J. & Thomas, M.B. (2008). Density-dependent effects of predator species-richness in diversity-function studies. Ecology, 89, 2986-2993.
  • Halaj, J. & Wise, D.H. (2001). Terrestrial trophic cascades: how much do they trickle? Am. Nat., 157, 262-281.
  • Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol., 91, 385–398.
  • Ives, A.R., Cardinale, B.J. & Snyder, W.E. (2005). A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol. Let., 8, 102-116.
  • Jeschke, J.M., Kopp, M. & Tollrian, R. (2002). Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr., 72, 95-112.
  • Kalinkat, G., Rall, B.C., Vucic-Pestic, O. & Brose, U. (2011). The allometry of prey preferences. PLoS One, 6, e25937.
  • Kéfi, S., Berlow, E.L., Wieters, E.A., Navarrete, S.A., Petchey, O.L., Wood, S., et al. (2012). More than a meal… Integrating non-feeding interactions into food webs. Ecol. Let., in press.
  • Kohda, M., Shibata, J., Awata, S., Gomagano, D., Takeyama, T., Hori, M., et al. (2008). Niche differentiation depends on body size in a cichlid fish: a model system of a community structured according to size regularities. J. Anim. Ecol., 77, 859-868.
  • Lang, B., Rall, B.C. & Brose, U. (2011). Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol., online early view, DOI: 10.1111/j.1365-2656.2011.01931.x.
  • Lawton, J.H. (1994). What do species do in ecosystems? Oikos, 71, 367-374.
  • Letourneau, D.K., Jedlicka, J.A., Bothwell, S.G. & Moreno, C.R. (2009). Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Ann. Rev. Ecol. Evol. Syst., 40, 573-592.
  • Macfadyen, A. (1961). Improved funnel-type extractors for soil arthropods. J. Anim. Ecol., 30, 171-184.
  • McNab, B.K. (2002). The physiological ecology of vertebrates: a view from energetics. Cornell University Press.
  • O’Connor, N.E., Grabowski, J.H., Ladwig, L.M. & Bruno, J.F. (2008). Simulated predator extinctions: predatot identity affects survival and recruitment of oysters. Ecology, 89, 428-438.
  • Oelbermann, K., Langel, R. & Scheu, S. (2008). Utilization of prey from the decomposer system by generalist predators of grassland. Oecologia, 155, 605-617.
  • Otto, S.B., Berlow, E.L., Rank, N.E., Smiley, J. & Brose, U. (2008). Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology, 89, 134-144.
  • Otto, S.B., Rall, B.C. & Brose, U. (2007). Allometric degree distributions facilitate food-web stability. Nature, 450, 1226-1229.
  • Persson, L., Leonardsson, K., de Roos, A.M., Gyllenberg, M. & Christensen, B. (1998). Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Pop. Biol., 54, 270-293.
  • Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food web structure. Proc. Natl. Acad. Sci. U.S.A., 105, 4191-4196.
  • Peters, R.H. (1983). The ecological implications of body size. Cambridge University Press, New York.
  • R Development Core Team. (2011). R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. Available at: http://www.R-project.org.
  • Rall, B.C., Kalinkat, G., Ott, D., Vucic-Pestic, O. & Brose, U. (2011). Taxonomic versus allometric constraints on non-linear interaction strengths. Oikos, 120, 483-492.
  • Riede, J.O., Brose, U., Ebenman, B., Jacob, U., Thompson, R., Townsend, C.R., et al. (2011). Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Let., 14, 169-178.
  • Schaefer, M. (1990). The soil fauna of a beech forest on limestone: trophic structure and energy budget. Oecologia, 82, 128-136.
  • Schmitz, O.J. (2007). Predator diversity and trophic interactions. Ecology, 88, 2415-2426.
  • Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends Ecol. Evol., 13, 350-355.
  • Sinclair, A.R.E., Mduma, S. & Brashares, J.S. (2003). Patterns of predation in a diverse predator–prey system. Nature, 425, 288-290.
  • Skalski, G.T. & Gilliam, J.F. (2001). Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology, 82, 3083-3092.
  • Soetaert, K., Petzoldt, T. & Setzer, R.W. (2010). Solving differential equations in r. The R Journal, 2, 5-15.
  • Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632-639.
  • Vucic-Pestic, O., Ehnes, R.B., Rall, B.C. & Brose, U. (2011). Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biol., 17, 1301-1310.
  • Vucic-Pestic, O., Rall, B.C., Kalinkat, G. & Brose, U. (2010). Allometric functional response model: body masses constrain interaction strengths. J. Anim. Ecol., 79, 249-256.
  • White, E., Ernest, S., Kerkhoff, A. & Enquist, B. (2007). Relationships between body size and abundance in ecology. Trends Ecol. Evol., 22, 323-330.
  • Worsfold, N.T., Warren, P.H. & Petchey, O.L. (2009). Context-dependent effects of predator removal from experimental microcosm communities. Oikos, 118, 1319-1326.
  • Yodzis, P. & Innes, S. (1992). Body size and consumer-resource dynamics. Am. Nat., 139, 1151-1175.
  • Zook, A.E., Eklof, A., Jacob, U. & Allesina, S. (2010). Food webs: Ordering species according to body size yields high degree of intervality. J. Theor. Biol., 271, 106-113.

Related publications